

SECURITY AUDIT OF

OPENEDEN SMART CONTRACT

Public Report

Mar 29, 2023

Verichains Lab

info@verichains.io

https://www.verichains.io

 $Driving \ Technology > Forward$

Security Audit – OpenEden Smart Contract

Version: 1.0 - Public Report

Date: Mar 29, 2023

ABBREVIATIONS

Name	Description	
Ethereum	An open source platform based on blockchain technology to create and distribute smart contracts and decentralized applications.	
Ether (ETH)	A cryptocurrency whose blockchain is generated by the Ethereum platform. Ether is used for payment of transactions and computing services in the Ethereum network.	
Smart contract	A computer protocol intended to digitally facilitate, verify or enforce the negotiation or performance of a contract.	
Solidity	A contract-oriented, high-level language for implementing smart contracts for the Ethereum platform.	
Solc	A compiler for Solidity.	
ERC20	ERC20 (BEP20 in Binance Smart Chain or <i>x</i> RP20 in other chains) tokens are blockchain-based assets that have value and can be sent and received. The primary difference with the primary coin is that instead of running on their own blockchain, ERC20 tokens are issued on a network that supports smart contracts such as Ethereum or Binance Smart Chain.	

Security Audit - OpenEden Smart Contract

Version: 1.0 - Public Report

Date: Mar 29, 2023

EXECUTIVE SUMMARY

This Security Audit Report was prepared by Verichains Lab on Mar 29, 2023. We would like to thank the OpenEden for trusting Verichains Lab in auditing smart contracts. Delivering high-quality audits is always our top priority.

This audit focused on identifying security flaws in code and the design of the OpenEden Smart Contract. The scope of the audit is limited to the source code files provided to Verichains. Verichains Lab completed the assessment using manual, static, and dynamic analysis techniques.

During the audit process, the audit team had identified no vulnerable issue in the contract code.

Security Audit - OpenEden Smart Contract

Version: 1.0 - Public Report

Date: Mar 29, 2023

TABLE OF CONTENTS

1. MANAGEMENT SUMMARY	5
1.1. About OpenEden Smart Contract	5
1.2. Audit scope	5
1.3. Audit methodology	5
1.4. Disclaimer	
2. AUDIT RESULT	7
2.1. Overview	7
2.1.1. BaseVault.sol	7
2.1.2. OpenEdenVault.sol	7
2.2. Findings	8
2.3. Additional notes and recommendations	8
2.3.1. OpenEdenVault.sol - The previewDeposit() and previewWithdraw() functions may differ from the actual amount of deposit or withdrawal that the user receives INFORMATIVE	8
2.3.2. BaseVault.sol - Redundancy of the event function INFORMATIVE	9
3. VERSION HISTORY	10

Security Audit – OpenEden Smart Contract

Version: 1.0 - Public Report

Date: Mar 29, 2023

1. MANAGEMENT SUMMARY

1.1. About OpenEden Smart Contract

OpenEden has launched the first smart contract vault managed by a regulated financial institution that offers 24/7 and direct access to U.S. Treasury Bills (T-Bills).

Stablecoin holders can mint TBILL tokens via the OpenEden TBILL Vault to earn the U.S. risk-free rate.

1.2. Audit scope

This audit focused on identifying security flaws in code and the design of the OpenEden Smart Contract.

The latest version of the following files were made available in the course of the review:

SHA256 Sum	File
51b1723cfe13e835393067ec250748c65c9db8e29064df262aa92db59ea3f490	BaseVault.sol
540b0d51f2e8fc0428ed38feec6a0e93eea9f573be425e58fd31af0617f4fb6a	OpenEdenVault.sol

1.3. Audit methodology

Our security audit process for smart contract includes two steps:

- Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using public and RK87, our in-house smart contract security analysis tool
- Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential problems.

Following is the list of commonly known vulnerabilities that were considered during the audit of the smart contract:

- Integer Overflow and Underflow
- Timestamp Dependence
- Race Conditions
- Transaction-Ordering Dependence
- DoS with (Unexpected) revert
- DoS with Block Gas Limit
- Gas Usage, Gas Limit and Loops
- Redundant fallback function
- Unsafe type Inference

Security Audit - OpenEden Smart Contract

Version: 1.0 - Public Report

Date: Mar 29, 2023

- Reentrancy
- Explicit visibility of functions state variables (external, internal, private and public)
- Logic Flaws

For vulnerabilities, we categorize the findings into categories as listed in table below, depending on their severity level:

SEVERITY LEVEL	DESCRIPTION
CRITICAL	A vulnerability that can disrupt the contract functioning; creates a critical risk to the contract; required to be fixed immediately.
HIGH	A vulnerability that could affect the desired outcome of executing the contract with high impact; needs to be fixed with high priority.
MEDIUM	A vulnerability that could affect the desired outcome of executing the contract with medium impact in a specific scenario; needs to be fixed.
LOW	An issue that does not have a significant impact, can be considered as less important.

Table 1. Severity levels

1.4. Disclaimer

Please note that security auditing cannot uncover all existing vulnerabilities, and even an audit in which no vulnerabilities are found is not a guarantee for a 100% secure smart contract. However, auditing allows discovering vulnerabilities that were unobserved, overlooked during development and areas where additional security measures are necessary.

Security Audit - OpenEden Smart Contract

Version: 1.0 - Public Report

Date: Mar 29, 2023

2. AUDIT RESULT

2.1. Overview

The OpenEden Smart Contract was written in Solidity language, with the required version to be ^0.8.4. The source code was written based on OpenZeppelin's library.

2.1.1. BaseVault.sol

BaseVault.sol extends Ownable contract. With Ownable, by default, the contract Owner is the contract deployer, but he can transfer ownership to another address at any time. Only the owner can change the on-chain data of this contract. The owner can change parameters such as transactionFee, firstDeposit, minDeposit, maxDeposit, maxWithdraw, targetReservesLevel, onchainServiceFeeRate, and offchainServiceFeeRate.

2.1.2. OpenEdenVault.sol

OpenEdenVault.sol extends ERC4626Upgradeable, ReentrancyGuardUpgradeable, PausableUpgradeable, ChainlinkAccessor, and AccessControl contracts.

This contract is an ERC4626 token contract which is a standard to optimize and unify the technical parameters of yield-bearing vaults. It provides a standard API for tokenized yield-bearing vaults that represent shares of a single underlying ERC-20 token. ERC-4626 also outlines an optional extension for tokenized vaults utilizing ERC-20, offering basic functionality for depositing, withdrawing tokens and reading balances.

The users with <code>DEFAULT_ADMIN_ROLE</code> or <code>OPERATOR_ROLE</code> can pause/unpause the contract using the <code>PausableUpgradeable</code> contract. Users can only deposit or withdraw tokens when the contract is not paused. The Admin or the Operator users can transfer any underlying assets to the treasury address by the <code>fundTBillPurchase()</code> function and can claim onchain/offchain service fees.

When the user calls the deposit() and withdraw() functions, this contract will send a request to Chainlink, and Chainlink will call the fulfill() callback function to process the user's deposit/withdrawal order.

The fulfill() function performs the corresponding actions such as DEPOSIT, WITHDRAW, WITHDRAW_QUEUE, EPOCH_UPDATE. When the amount of assets in the contract is not enough to execute the withdraw order, the remaining amount will be put into QueueWithdrawal, until the Admin or Operator calls the processWithdrawalQueue() action to continue withdrawing the remaining funds for users. With the EPOCH_UPDATE action, the contract will update values such as onchainFeeRate, offchainFeeRate, _onchainFee, _offchainFee and increase the _epoch by 1 unit. In addition, the fulfill() function will update the value of the _latestOffchainAsset variable,

Security Audit - OpenEden Smart Contract

```
Version: 1.0 - Public Report
Date: Mar 29, 2023
```


which will affect the calculation of the amount of assets available at the time of deposit and withdrawal, and it will also modify the value of the _offchainFee variable.

There are certain conditions for depositing, withdrawing, and transferring tokens, such as the user has completed KYC and is not banned. In addition, there are other conditions for transferring tokens, and all of this logic is included in the KycManager contract.

2.2. Findings

During the audit process, the audit team found no vulnerability in the given version of OpenEden Smart Contract.

2.3. Additional notes and recommendations

2.3.1. OpenEdenVault.sol - The previewDeposit() and previewWithdraw() functions may differ from the actual amount of deposit or withdrawal that the user receives INFORMATIVE

If OpenEden Smart Contract intends to support EOA account access directly, you should consider adding an additional function call for deposit/withdraw with the means to accommodate slippage loss or unexpected deposit/withdrawal limits, since they have no other means to revert the transaction if the exact output amount is not achieved.

The methods total Assets, convert To Shares and convert To Assets are estimates useful for display purposes, and do not have to confer the exact amount of underlying assets their context suggests.

The preview methods return values that are as close as possible to exact as possible. For that reason, they are manipulable by altering the on-chain conditions and are not always safe to be used as price oracles. This specification includes convert methods that are allowed to be inexact and therefore can be implemented as robust price oracles. For example, it would be correct to implement the convert methods as using a time-weighted average price in converting between assets and shares.

Security Audit – OpenEden Smart Contract

Version: 1.0 - Public Report

Date: Mar 29, 2023

2.3.2. BaseVault.sol - Redundancy of the event function INFORMATIVE

The event SetFirsetDeposit() is not used.

RECOMMENDATION

Remove this event.

Security Audit - OpenEden Smart Contract

Version: 1.0 - Public Report

Date: Mar 29, 2023

3. VERSION HISTORY

Version	Date	Status/Change	Created by
1.0	Mar 29,2023	Public Report	Verichains Lab

Table 2. Report versions history

SECURITY AUDIT OF

OPENEDEN SMART CONTRACT

Public Report

Mar 31, 2023

Verichains Lab

info@verichains.io

https://www.verichains.io

 $Driving \ Technology > Forward$

Security Audit – OpenEden Smart Contract

Version: 1.1 - Public Report

Date: Mar 31, 2023

ABBREVIATIONS

Name	Description	
Ethereum	An open source platform based on blockchain technology to create and distribute smart contracts and decentralized applications.	
Ether (ETH)	A cryptocurrency whose blockchain is generated by the Ethereum platform. Ether is used for payment of transactions and computing services in the Ethereum network.	
Smart contract	A computer protocol intended to digitally facilitate, verify or enforce the negotiation or performance of a contract.	
Solidity	A contract-oriented, high-level language for implementing smart contracts for the Ethereum platform.	
Solc	A compiler for Solidity.	
ERC20	ERC20 (BEP20 in Binance Smart Chain or <i>x</i> RP20 in other chains) tokens are blockchain-based assets that have value and can be sent and received. The primary difference with the primary coin is that instead of running on their own blockchain, ERC20 tokens are issued on a network that supports smart contracts such as Ethereum or Binance Smart Chain.	

Security Audit - OpenEden Smart Contract

Version: 1.1 - Public Report

Date: Mar 31, 2023

EXECUTIVE SUMMARY

This Security Audit Report was prepared by Verichains Lab on Mar 31, 2023. We would like to thank the OpenEden for trusting Verichains Lab in auditing smart contracts. Delivering high-quality audits is always our top priority.

This audit focused on identifying security flaws in code and the design of the OpenEden Smart Contract. The scope of the audit is limited to the source code files provided to Verichains. Verichains Lab completed the assessment using manual, static, and dynamic analysis techniques.

During the audit process, the audit team had identified no vulnerable issue in the contract code.

Security Audit - OpenEden Smart Contract

Version: 1.1 - Public Report

Date: Mar 31, 2023

TABLE OF CONTENTS

1. MANAGEMENT SUMMARY	5
1.1. About OpenEden Smart Contract	5
1.2. Audit scope	5
1.3. Audit methodology	5
1.4. Disclaimer	6
2. AUDIT RESULT	7
2.1. Overview	7
2.1.1. BaseVault.sol	7
2.1.2. KycManager.sol	7
2.1.3. ChainlinkAccessor.sol.	7
2.1.4. OpenEdenVault.sol	7
2.2. Findings	8
2.3. Additional notes and recommendations	8
2.3.1. ChainlinkAccessor.sol - Contract redundancy INFORMATIVE	8
2.3.2. OpenEdenVault.sol - The previewDeposit() and previewWithdraw() functions may differ from the actual amount of deposit or withdrawal that the user receives INFORMATIVE	9
2.3.3. BaseVault.sol, ChainlinkAccessor.sol - The redundant comment and event function INFORMATIVE	9
3 VERSION HISTORY	10

Security Audit – OpenEden Smart Contract

Version: 1.1 - Public Report

Date: Mar 31, 2023

1. MANAGEMENT SUMMARY

1.1. About OpenEden Smart Contract

OpenEden has launched the first smart contract vault managed by a regulated financial institution that offers 24/7 and direct access to U.S. Treasury Bills (T-Bills).

Stablecoin holders can mint TBILL tokens via the OpenEden TBILL Vault to earn the U.S. risk-free rate.

1.2. Audit scope

This audit focused on identifying security flaws in code and the design of the OpenEden Smart Contract.

The latest version of the following files were made available in the course of the review:

SHA256 Sum	File
51b1723cfe13e835393067ec250748c65c9db8e29064df262aa92db59ea3f490	BaseVault.sol
540b0d51f2e8fc0428ed38feec6a0e93eea9f573be425e58fd31af0617f4fb6a	OpenEdenVault.sol
15d78edd9cada841fd20501bac68877dfc72d7ff33c84d84de2cdfad4da27dec	KycManager.sol
5d770938e7dce60384755fbfcc15a54a7d2fc49346fd29766e23448438743a9a	ChainlinkAccessor.sol

1.3. Audit methodology

Our security audit process for smart contract includes two steps:

- Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using public and RK87, our in-house smart contract security analysis tool.
- Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential problems.

Following is the list of commonly known vulnerabilities that were considered during the audit of the smart contract:

- Integer Overflow and Underflow
- Timestamp Dependence
- Race Conditions
- Transaction-Ordering Dependence
- DoS with (Unexpected) revert
- DoS with Block Gas Limit

Security Audit - OpenEden Smart Contract

Version: 1.1 - Public Report

Date: Mar 31, 2023

- Gas Usage, Gas Limit and Loops
- Redundant fallback function
- Unsafe type Inference
- Reentrancy
- Explicit visibility of functions state variables (external, internal, private and public)
- Logic Flaws

For vulnerabilities, we categorize the findings into categories as listed in table below, depending on their severity level:

SEVERITY LEVEL	DESCRIPTION
CRITICAL	A vulnerability that can disrupt the contract functioning; creates a critical risk to the contract; required to be fixed immediately.
HIGH	A vulnerability that could affect the desired outcome of executing the contract with high impact; needs to be fixed with high priority.
MEDIUM	A vulnerability that could affect the desired outcome of executing the contract with medium impact in a specific scenario; needs to be fixed.
LOW	An issue that does not have a significant impact, can be considered as less important.

Table 1. Severity levels

1.4. Disclaimer

Please note that security auditing cannot uncover all existing vulnerabilities, and even an audit in which no vulnerabilities are found is not a guarantee for a 100% secure smart contract. However, auditing allows discovering vulnerabilities that were unobserved, overlooked during development and areas where additional security measures are necessary.

Security Audit - OpenEden Smart Contract

Version: 1.1 - Public Report

Date: Mar 31, 2023

2. AUDIT RESULT

2.1. Overview

The OpenEden Smart Contract was written in Solidity language, with the required version to be ^0.8.4. The source code was written based on OpenZeppelin's library.

2.1.1. BaseVault.sol

BaseVault.sol extends Ownable contract. With Ownable, by default, the contract Owner is the contract deployer, but he can transfer ownership to another address at any time. Only the owner can change the on-chain data of this contract. The owner can change parameters such as transactionFee, firstDeposit, minDeposit, maxDeposit, maxWithdraw, targetReservesLevel, onchainServiceFeeRate, and offchainServiceFeeRate.

2.1.2. KycManager.sol

KycManager.sol extends Ownable contract. With Ownable, by default, the contract Owner is the contract deployer, but he can transfer ownership to another address at any time. Only the owner can change the on-chain data of this contract.

There are 3 types of KYC: NON_KYC, US_KYC, GENERAL_KYC. The Owner can assign any address to one of these 3 KYC types and can toggle Strict mode. Additionally, the Owner can also decide whether a specific address can be included in the banned/unbanned list.

2.1.3. ChainlinkAccessor.sol

When the contract deployer of the OpenEdenVault contract calls the initialize() function, it will call the init() function inside ChainlinkAccessor contract, which will initialize the initial values for ChainlinkParameters, including fee, jobId, urlData, pathToOffchainAssets, pathToTotalOffchainAssetAtLastClose, and also initialize the chainlinkOracle and chainlinkToken addresses. The Admin can change the values in ChainlinkParameters.

2.1.4. OpenEdenVault.sol

OpenEdenVault.sol extends ERC4626Upgradeable, ReentrancyGuardUpgradeable, PausableUpgradeable, ChainlinkAccessor, and AccessControl contracts.

This contract is an ERC4626 token contract which is a standard to optimize and unify the technical parameters of yield-bearing vaults. It provides a standard API for tokenized yield-bearing vaults that represent shares of a single underlying ERC-20 token. ERC-4626 also outlines an optional extension for tokenized vaults utilizing ERC-20, offering basic functionality for depositing, withdrawing tokens and reading balances.

Security Audit – OpenEden Smart Contract

Version: 1.1 - Public Report

Date: Mar 31, 2023

The users with <code>DEFAULT_ADMIN_ROLE</code> or <code>OPERATOR_ROLE</code> can pause/unpause the contract using the <code>PausableUpgradeable</code> contract. Users can only deposit or withdraw tokens when the contract is not paused. The Admin or the Operator users can transfer any underlying assets to the treasury address by the <code>fundTBillPurchase()</code> function and can claim onchain/offchain service fees.

When the user calls the deposit() and withdraw() functions, this contract will send a request to Chainlink, and Chainlink will call the fulfill() callback function to process the user's deposit/withdrawal order.

The fulfill() function performs the corresponding actions such as DEPOSIT, WITHDRAW, WITHDRAW_QUEUE, EPOCH_UPDATE. When the amount of assets in the contract is not enough to execute the withdraw order, the remaining amount will be put into QueueWithdrawal, until the Admin or Operator calls the processWithdrawalQueue() action to continue withdrawing the remaining funds for users. With the EPOCH_UPDATE action, the contract will update values such as onchainFeeRate, offchainFeeRate, _onchainFee, _offchainFee and increase the _epoch by 1 unit. In addition, the fulfill() function will update the value of the _latestOffchainAsset variable, which will affect the calculation of the amount of assets available at the time of deposit and withdrawal, and it will also modify the value of the _offchainFee variable.

There are certain conditions for depositing, withdrawing, and transferring tokens: Users who want to deposit and withdraw must be users who have been KYC'd within the KycManager contract (either US_KYC or GENERAL_KYC), and not be on the banned list. Additionally, there are 3 other conditions when users want to transfer tokens:

- If the sender and/or recipient are on the banned list, they will not be able to transfer/receive tokens.
- If the Strict mode of the KycManager contract is enabled, only the sender/receiver who has been KYCed can send/receive.
- If the KYC type of the sender is US KYC, then the recipient must also be KYCed.

2.2. Findings

During the audit process, the audit team found no vulnerability in the given version of OpenEden Smart Contract.

2.3. Additional notes and recommendations

2.3.1. ChainlinkAccessor.sol - Contract redundancy INFORMATIVE

The contract hardhat/console.sol is imported but not used.

RECOMMENDATION

Security Audit - OpenEden Smart Contract

```
Version: 1.1 - Public Report
Date: Mar 31, 2023
```


Remove the hardhat/console.sol contract.

2.3.2. OpenEdenVault.sol - The previewDeposit() and previewWithdraw() functions may differ from the actual amount of deposit or withdrawal that the user receives INFORMATIVE

If OpenEden Smart Contract intends to support EOA account access directly, you should consider adding an additional function call for deposit/withdraw with the means to accommodate slippage loss or unexpected deposit/withdrawal limits, since they have no other means to revert the transaction if the exact output amount is not achieved.

The methods total Assets, convert To Shares and convert To Assets are estimates useful for display purposes, and do not have to confer the exact amount of underlying assets their context suggests.

The preview methods return values that are as close as possible to exact as possible. For that reason, they are manipulable by altering the on-chain conditions and are not always safe to be used as price oracles. This specification includes convert methods that are allowed to be inexact and therefore can be implemented as robust price oracles. For example, it would be correct to implement the convert methods as using a time-weighted average price in converting between assets and shares.

2.3.3. BaseVault.sol, ChainlinkAccessor.sol - The redundant comment and event function INFORMATIVE

- There is an unnecessary // TODO comment at line 94 in the ChainlinkAccessor contract.
- The event SetFirsetDeposit() is not used in BaseVault contract.

RECOMMENDATION

Remove both.

Security Audit - OpenEden Smart Contract

Version: 1.1 - Public Report

Date: Mar 31, 2023

3. VERSION HISTORY

Version	Date	Status/Change	Created by
1.0	Mar 29,2023	Public Report	Verichains Lab
1.1	Mar 31,2023	Public Report	Verichains Lab

Table 2. Report versions history